When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Homogeneous polynomial - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_polynomial

    In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. [1] For example, x 5 + 2 x 3 y 2 + 9 x y 4 {\displaystyle x^{5}+2x^{3}y^{2}+9xy^{4}} is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5.

  3. Homogeneous function - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_function

    Given a homogeneous polynomial of degree with real coefficients that takes only positive values, one gets a positively homogeneous function of degree / by raising it to the power /. So for example, the following function is positively homogeneous of degree 1 but not homogeneous: ( x 2 + y 2 + z 2 ) 1 2 . {\displaystyle \left(x^{2}+y^{2}+z^{2 ...

  4. Category:Homogeneous polynomials - Wikipedia

    en.wikipedia.org/wiki/Category:Homogeneous...

    This page was last edited on 4 November 2019, at 01:04 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  5. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    In the case of polynomials in more than one indeterminate, a polynomial is called homogeneous of degree n if all of its non-zero terms have degree n. The zero polynomial is homogeneous, and, as a homogeneous polynomial, its degree is undefined. [c] For example, x 3 y 2 + 7x 2 y 3 − 3x 5 is homogeneous of degree 5. For more details, see ...

  6. Complete homogeneous symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Complete_homogeneous...

    Multiplying this by the generating function for the complete homogeneous symmetric polynomials, one obtains the constant series 1 (equivalently, plethystic exponentials satisfy the usual properties of an exponential), and the relation between the elementary and complete homogeneous polynomials follows from comparing coefficients of t m.

  7. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  8. Multi-homogeneous Bézout theorem - Wikipedia

    en.wikipedia.org/wiki/Multi-homogeneous_Bézout...

    The multi-homogeneous Bézout bound on the number of solutions may be used for non-homogeneous systems of equations, when the polynomials may be (multi)-homogenized without increasing the total degree. However, in this case, the bound may be not sharp, if there are solutions "at infinity".

  9. Quadratic form - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form

    More concretely, an n-ary quadratic form over a field K is a homogeneous polynomial of degree 2 in n variables with coefficients in K: (, …,) = = =,. This formula may be rewritten using matrices: let x be the column vector with components x 1 , ..., x n and A = ( a ij ) be the n × n matrix over K whose entries are the coefficients of q .