When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.

  3. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    A strictly convex function is a function that the straight line between any pair of points on the curve is above the curve except for the intersection points between the straight line and the curve. An example of a function which is convex but not strictly convex is f ( x , y ) = x 2 + y {\displaystyle f(x,y)=x^{2}+y} .

  4. Convex curve - Wikipedia

    en.wikipedia.org/wiki/Convex_curve

    A convex curve (black) forms a connected subset of the boundary of a convex set (blue), and has a supporting line (red) through each of its points. A parabola, a convex curve that is the graph of the convex function () = In geometry, a convex curve is a plane curve that has a supporting line through each of its points.

  5. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  6. Convex set - Wikipedia

    en.wikipedia.org/wiki/Convex_set

    Equivalently, a convex set or a convex region is a set that intersects every line in a line segment, single point, or the empty set. [1] [2] For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set in the plane is always a convex curve.

  7. Convex analysis - Wikipedia

    en.wikipedia.org/wiki/Convex_analysis

    Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets , often with applications in convex minimization , a subdomain of optimization theory .

  8. Convex measure - Wikipedia

    en.wikipedia.org/wiki/Convex_measure

    The convexity of a measure μ on n-dimensional Euclidean space R n in the sense above is closely related to the convexity of its probability density function. [2] Indeed, μ is s-convex if and only if there is an absolutely continuous measure ν with probability density function ρ on some R k so that μ is the push-forward on ν under a linear ...

  9. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.