Search results
Results From The WOW.Com Content Network
In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections ...
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation () + [(+)] =,or equivalently [() ()] + [(+)] =,where the indices ℓ and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively.
The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...
The magic angle is a precisely defined angle, the value of which is approximately 54.7356°. The magic angle is a root of a second-order Legendre polynomial, P 2 (cos θ) = 0, and so any interaction which depends on this second-order Legendre polynomial vanishes at the magic angle.
also P 0 n are the Legendre polynomials and P m n for 1 ≤ m ≤ n are the associated Legendre functions. The first spherical harmonics with n = 0, 1, 2, ...
A trigonometric polynomial can be considered a periodic function on the real line, with period some divisor of , or as a function on the unit circle.. Trigonometric polynomials are dense in the space of continuous functions on the unit circle, with the uniform norm; [4] this is a special case of the Stone–Weierstrass theorem.
In mathematics, Rodrigues' formula (formerly called the Ivory–Jacobi formula) generates the Legendre polynomials. It was independently introduced by Olinde Rodrigues ( 1816 ), Sir James Ivory ( 1824 ) and Carl Gustav Jacobi ( 1827 ).
Associated Legendre polynomials are the colatitudinal part of the spherical harmonics which are common to all separations of Laplace's equation in spherical polar coordinates. [2] The radial part of the solution varies from one potential to another, but the harmonics are always the same and are a consequence of spherical symmetry.