Search results
Results From The WOW.Com Content Network
In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation.
Thus the square roots of A are given by VD 1/2 V −1, where D 1/2 is any square root matrix of D, which, for distinct eigenvalues, must be diagonal with diagonal elements equal to square roots of the diagonal elements of D; since there are two possible choices for a square root of each diagonal element of D, there are 2 n choices for the ...
A square matrix is a matrix with the same number of rows and columns. [5] An n-by-n matrix is known as a square matrix of order n. Any two square matrices of the same order can be added and multiplied. The entries a ii form the main diagonal of a square matrix. They lie on the imaginary line that runs from the top left corner to the bottom ...
An square matrix with entries in a field is called diagonalizable or nondefective if there exists an invertible matrix (i.e. an element of the general linear group GL n (F)), , such that is a diagonal matrix.
Consequently, if all singular values of a square matrix are non-degenerate and non-zero, then its singular value decomposition is unique, up to multiplication of a column of by a unit-phase factor and simultaneous multiplication of the corresponding column of by the same unit-phase factor.
A square root of a 2×2 matrix M is another 2×2 matrix R such that M = R 2, where R 2 stands for the matrix product of R with itself. In general, there can be zero, two, four, or even an infinitude of square-root matrices. In many cases, such a matrix R can be obtained by an explicit formula.
If m = n, then f is a function from R n to itself and the Jacobian matrix is a square matrix. We can then form its determinant, known as the Jacobian determinant. The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point.
In general, a square complex matrix A is similar to a block diagonal matrix = [] where each block J i is a square matrix of the form = []. So there exists an invertible matrix P such that P −1 AP = J is such that the only non-zero entries of J are on the diagonal and the superdiagonal.