When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  3. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is

  4. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  5. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .

  6. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Otherwise, any series of real numbers or complex numbers that converges but does not converge absolutely is conditionally convergent. Any conditionally convergent sum of real numbers can be rearranged to yield any other real number as a limit, or to diverge. These claims are the content of the Riemann series theorem. [31] [32] [33]

  7. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The ordinary generating function of a sequence can be expressed as a rational function (the ratio of two finite-degree polynomials) if and only if the sequence is a linear recursive sequence with constant coefficients; this generalizes the examples above. Conversely, every sequence generated by a fraction of polynomials satisfies a linear ...

  8. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test.

  9. Summation of Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Summation_of_Grandi's_series

    Given a series a 0 + a 1 + a 2 + · · ·, one forms a new series a 0 + a 1 x + a 2 x 2 + · · ·. If the latter series converges for 0 < x < 1 to a function with a limit as x tends to 1, then this limit is called the Abel sum of the original series, after Abel's theorem which guarantees that the procedure is consistent with ordinary summation ...