Search results
Results From The WOW.Com Content Network
Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field.
According to the description of an atom interacting with the electromagnetic field, the absorption of light by the atom depends on the frequency of the incident photons. More precisely, the absorption is characterized by a Lorentzian of width Γ/2 (for reference, Γ ≈ 2π × 6 MHz for common rubidium D-line transitions [2]).
Atomic absorption spectroscopy (AAS) is a spectroanalytical procedure for the quantitative measurement of chemical elements. AAS is based on the absorption of light by free metallic ions that have been atomized from a sample. An alternative technique is atomic emission spectroscopy (AES).
GFAA spectrometry instruments have the following basic features: 1. a source of light (lamp) that emits resonance line radiation; 2. an atomization chamber (graphite tube) in which the sample is vaporized; 3. a monochromator for selecting only one of the characteristic wavelengths (visible or ultraviolet) of the element of interest; 4. a detector, generally a photomultiplier tube (light ...
X-ray absorption spectroscopy (XAS) is a widely used technique for determining the local geometric and/or electronic structure of matter. [1] The experiment is usually performed at synchrotron radiation facilities, which provide intense and tunable X-ray beams. Samples can be in the gas phase, solutions, or solids. [2]
XAES – X-ray induced Auger electron spectroscopy; XANES – XANES, synonymous with NEXAFS (near edge X-ray absorption fine structure) XAS – X-ray absorption spectroscopy; X-CTR – X-ray crystal truncation rod scattering; X-ray crystallography; XDS – X-ray diffuse scattering; XES – X-ray emission spectroscopy
In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.
An example of spectroscopy: a prism analyses white light by dispersing it into its component colors. Spectroscopy is the field of study that measures and interprets electromagnetic spectra. [1] [2] In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.