When.com Web Search

  1. Ads

    related to: shielding materials for gamma rays made

Search results

  1. Results From The WOW.Com Content Network
  2. Radiation protection - Wikipedia

    en.wikipedia.org/wiki/Radiation_protection

    Almost any material can act as a shield from gamma or x-rays if used in sufficient amounts. Different types of ionizing radiation interact in different ways with shielding material. The effectiveness of shielding is dependent on stopping power, which varies with the type and energy of radiation and the shielding material used. Different ...

  3. Lead castle - Wikipedia

    en.wikipedia.org/wiki/Lead_castle

    A lead castle built to shield a radioactive sample in a lab. The bricks are flat-sided Example of chevron lead bricks used to prevent shine paths. A lead castle, also called a lead cave or a lead housing, is a structure composed of lead to provide shielding against gamma radiation in a variety of applications in the nuclear industry and other activities which use ionizing radiation.

  4. Lead shielding - Wikipedia

    en.wikipedia.org/wiki/Lead_shielding

    Lead shielding refers to the use of lead as a form of radiation protection to shield people or objects from radiation so as to reduce the effective dose. Lead can effectively attenuate certain kinds of radiation because of its high density and high atomic number ; principally, it is effective at stopping gamma rays and x-rays .

  5. Ducrete - Wikipedia

    en.wikipedia.org/wiki/Ducrete

    This ceramic material is a very efficient shielding material since it presents both high atomic number (uranium) for gamma shielding, and low atomic number (water bonded in the concrete) for neutron shielding. [1] There exists an optimum uranium-to-binder ratio for a combined attenuation of gamma and neutron radiation at a given wall thickness.

  6. Gamma ray - Wikipedia

    en.wikipedia.org/wiki/Gamma_ray

    Materials for shielding gamma rays are typically measured by the thickness required to reduce the intensity of the gamma rays by one half (the half-value layer or HVL). For example, gamma rays that require 1 cm (0.4 inch) of lead to reduce their intensity by 50% will also have their intensity reduced in half by 4.1 cm of granite rock, 6 cm (2.5 ...

  7. Radiation damage - Wikipedia

    en.wikipedia.org/wiki/Radiation_damage

    Two main approaches to reduce radiation damage are reducing the amount of energy deposited in the sensitive material (e.g. by shielding, distance from the source, or spatial orientation), or modification of the material to be less sensitive to radiation damage (e.g. by adding antioxidants, stabilizers, or choosing a more suitable material).