Search results
Results From The WOW.Com Content Network
Column generation or delayed column generation is an efficient algorithm for solving large linear programs. The overarching idea is that many linear programs are too large to consider all the variables explicitly. The idea is thus to start by solving the considered program with only a subset of its variables.
The main article gives examples of generating functions for many sequences. Other examples of generating function variants include Dirichlet generating functions (DGFs), Lambert series, and Newton series. In this article we focus on transformations of generating functions in mathematics and keep a running list of useful transformations and ...
An example where convolutions of generating functions are useful allows us to solve for a specific closed-form function representing the ordinary generating function for the Catalan numbers, C n. In particular, this sequence has the combinatorial interpretation as being the number of ways to insert parentheses into the product x 0 · x 1 ·⋯ ...
Consider the problem of distributing objects given by a generating function into a set of n slots, where a permutation group G of degree n acts on the slots to create an equivalence relation of filled slot configurations, and asking about the generating function of the configurations by weight of the configurations with respect to this equivalence relation, where the weight of a configuration ...
Given a transformation between input and output values, described by a mathematical function, optimization deals with generating and selecting the best solution from some set of available alternatives, by systematically choosing input values from within an allowed set, computing the output of the function and recording the best output values found during the process.
The result, x 2, is a "better" approximation to the system's solution than x 1 and x 0. If exact arithmetic were to be used in this example instead of limited-precision, then the exact solution would theoretically have been reached after n = 2 iterations (n being the order of the system).
After m iterations, where m is the size of the matrix A, the Krylov space K m is the whole of R m and hence the GMRES method arrives at the exact solution. However, the idea is that after a small number of iterations (relative to m), the vector x n is already a good approximation to the exact solution. This does not happen in general.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.