When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  3. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    To see the difference, consider the probability for a certain event in the game. In the above-mentioned dice games, the only thing that matters is the current state of the board. The next state of the board depends on the current state, and the next roll of the dice. It does not depend on how things got to their current state.

  4. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]

  5. State-transition table - Wikipedia

    en.wikipedia.org/wiki/State-transition_table

    In the state-transition table, all possible inputs to the finite-state machine are enumerated across the columns of the table, while all possible states are enumerated across the rows. If the machine is in the state S 1 (the first row) and receives an input of 1 (second column), the machine will stay in the state S 1.

  6. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector, the state vector. If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  7. State-transition equation - Wikipedia

    en.wikipedia.org/wiki/State-Transition_Equation

    The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.

  8. Controllability Gramian - Wikipedia

    en.wikipedia.org/wiki/Controllability_Gramian

    The matrix () = = () is nonsingular for any >. ... is the state transition matrix of ˙ = (), is nonsingular. Again, we have a similar method to determine if a system ...

  9. Master equation - Wikipedia

    en.wikipedia.org/wiki/Master_equation

    This is the opposite of what one might expect, but is appropriate for conventional matrix multiplication. For each state k, the increase in occupation probability depends on the contribution from all other states to k, and is given by: , where is the probability for the system to be in the state , while the matrix is filled with a grid of ...