Ad
related to: all kinds of stress in physicsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Stress in a material body may be due to multiple physical causes, including external influences and internal physical processes. Some of these agents (like gravity, changes in temperature and phase , and electromagnetic fields) act on the bulk of the material, varying continuously with position and time.
Engineering stress and engineering strain are approximations to the internal state that may be determined from the external forces and deformations of an object, provided that there is no significant change in size. When there is a significant change in size, the true stress and true strain can be derived from the instantaneous size of the object.
Stress: σ: Force per unit oriented surface area Pa L −1 M T −2: order 2 tensor Surface tension: γ: Energy change per unit change in surface area N/m or J/m 2: M T −2: Thermal conductance κ (or) λ: Measure for the ease with which an object conducts heat W/K L 2 M T −3 Θ −1: extensive Thermal conductivity: λ: Measure for the ease ...
Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.
physical chemistry, dealing with physical processes and their relations in the science of physical chemistry; physics education, set of methods to teach physics; physical oceanography, is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters
Specifying how stress and strain are to be measured, including directions, allows for many types of elastic moduli to be defined. The four primary ones are: Young's modulus ( E ) describes tensile and compressive elasticity , or the tendency of an object to deform along an axis when opposing forces are applied along that axis; it is defined as ...
Because the elasticity of a material is described in terms of a stress–strain relation, it is essential that the terms stress and strain be defined without ambiguity. Typically, two types of relation are considered. The first type deals with materials that are elastic only for small strains.
Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.