When.com Web Search

  1. Ads

    related to: how to calculate aircraft performance

Search results

  1. Results From The WOW.Com Content Network
  2. Range (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Range_(aeronautics)

    For most unpowered aircraft, the maximum flight time is variable, limited by available daylight hours, aircraft design (performance), weather conditions, aircraft potential energy, and pilot endurance. Therefore, the range equation can only be calculated exactly for powered aircraft. It will be derived for both propeller and jet aircraft.

  3. Energy–maneuverability theory - Wikipedia

    en.wikipedia.org/wiki/Energy–maneuverability...

    Energy–maneuverability theory is a model of aircraft performance. It was developed by Col. John Boyd, a fighter pilot, and Thomas P. Christie, a mathematician with the United States Air Force, [1] and is useful in describing an aircraft's performance as the total of kinetic and potential energies or aircraft specific energy.

  4. Aircraft performance - Wikipedia

    en.wikipedia.org/wiki/Aircraft_performance

    Aircraft manufacturers will publish performance data in an aircraft flight manual, concerning the behaviour of the aircraft under various circumstances, such as different speeds, weights, and air temperatures, pressures, & densities. [5] [6] Performance data is information pertaining to takeoff, climb, range, endurance, descent, and landing. [1]

  5. Thrust-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Thrust-to-weight_ratio

    The thrust-to-weight ratio and lift-to-drag ratio are the two most important parameters in determining the performance of an aircraft. The thrust-to-weight ratio varies continually during a flight. Thrust varies with throttle setting, airspeed , altitude , air temperature, etc. Weight varies with fuel burn and payload changes.

  6. Indicated airspeed - Wikipedia

    en.wikipedia.org/wiki/Indicated_airspeed

    Subsonic aircraft must not fly faster than a specific percentage of the speed of sound. Usually passenger airliners do not fly faster than around 85% of speed of sound, or Mach 0.85. Supersonic aircraft, like the Concorde and military fighters, use the Machmeter as the main speed instrument with the exception of take-offs and landings.

  7. Thickness-to-chord ratio - Wikipedia

    en.wikipedia.org/wiki/Thickness-to-chord_ratio

    The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...

  8. Load factor (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(aeronautics)

    The load factor, and in particular its sign, depends not only on the forces acting on the aircraft, but also on the orientation of its vertical axis. During straight and level flight, the load factor is +1 if the aircraft is flown "the right way up", [2]: 90 whereas it becomes −1 if the aircraft is flown "upside-down" (inverted). In both ...

  9. Takeoff and Landing Performance Assessment - Wikipedia

    en.wikipedia.org/wiki/Takeoff_and_Landing...

    Separate runway condition codes are published for each third of a runway, and pilots use a Runway Condition Assessment Matrix (RCAM) to calculate their aircraft performance. [1] TALPA was introduced by the United States Federal Aviation Authority (FAA) in 2016. [1]