When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    Figure 1: Parallelogram construction for adding vectors. This construction has the same result as moving F 2 so its tail coincides with the head of F 1, and taking the net force as the vector joining the tail of F 1 to the head of F 2. This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth.

  3. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  4. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    When two forces act on a point particle, the resulting force, the resultant (also called the net force), can be determined by following the parallelogram rule of vector addition: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal ...

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  6. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    In a d-dimensional space, Hodge star takes a k-vector to a (d–k)-vector; thus only in d = 3 dimensions is the result an element of dimension one (3–2 = 1), i.e. a vector. For example, in d = 4 dimensions, the cross product of two vectors has dimension 4–2 = 2, giving a bivector. Thus, only in three dimensions does cross product define an ...

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. Holonomy - Wikipedia

    en.wikipedia.org/wiki/Holonomy

    The curvature arises when one travels around an infinitesimal parallelogram. In detail, if σ: [0, 1] × [0, 1] → M is a surface in M parametrized by a pair of variables x and y , then a vector V may be transported around the boundary of σ: first along ( x , 0), then along (1, y ), followed by ( x , 1) going in the negative direction, and ...

  9. Equipollence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Equipollence_(geometry)

    A property of Euclidean spaces is the parallelogram property of vectors: If two segments are equipollent, then they form two sides of a parallelogram: If a given vector holds between a and b, c and d, then the vector which holds between a and c is the same as that which holds between b and d.