Search results
Results From The WOW.Com Content Network
Applications of the Schönhage–Strassen algorithm include large computations done for their own sake such as the Great Internet Mersenne Prime Search and approximations of π, as well as practical applications such as Lenstra elliptic curve factorization via Kronecker substitution, which reduces polynomial multiplication to integer ...
A visual memory tool can replace the FOIL mnemonic for a pair of polynomials with any number of terms. Make a table with the terms of the first polynomial on the left edge and the terms of the second on the top edge, then fill in the table with products of multiplication. The table equivalent to the FOIL rule looks like this:
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]
Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.
The third power of the trinomial a + b + c is given by (+ +) = + + + + + + + + +. This can be computed by hand using the distributive property of multiplication over addition and combining like terms, but it can also be done (perhaps more easily) with the multinomial theorem.
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
The names for the degrees may be applied to the polynomial or to its terms. For example, the term 2x in x 2 + 2x + 1 is a linear term in a quadratic polynomial. The polynomial 0, which may be considered to have no terms at all, is called the zero polynomial. Unlike other constant polynomials, its degree is not zero.
Since that work, Pan has returned to symbolic and numeric computation and to an earlier theme of his research, computations with polynomials. He developed fast algorithms for the numerical computation of polynomial roots, and, with Bernard Mourrain, algorithms for multivariate polynomials based on their relations to structured matrices. [5]