Ad
related to: rules with square roots
Search results
Results From The WOW.Com Content Network
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Mannheim's rule had two major modifications that made it easier to use than previous general-purpose slide rules. Such rules had four basic scales, A, B, C, and D, and D was the only single-decade logarithmic scale; C had two decades, like A and B. Most operations were done on the A and B scales; D was only used for finding squares and square ...
A matrix B is said to be a square root of A if the matrix product BB is equal to A. [1] Some authors use the name square root or the notation A 1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = B T B = A (for real-valued matrices, where B T is the ...
A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:
Simple slide rules will have a C and D scale for multiplication and division, most likely an A and B for squares and square roots, and possibly CI and K for reciprocals and cubes. [8] In the early days of slide rules few scales were provided and no labelling was necessary. However, gradually the number of scales tended to increase.
In some fields, some elements have no square roots and some have two; only zero has just one square root, except in fields of characteristic 2. Even if a field does not contain a square root of some number, there is always a quadratic extension field which does, so the quadratic formula will always make sense as a formula in that extension field.