When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    The Pearson median skewness, or second skewness coefficient, [12] [13] is defined as ⁠ 3 ( mean − median ) / standard deviation ⁠ . Which is a simple multiple of the nonparametric skew .

  3. Pearson distribution - Wikipedia

    en.wikipedia.org/wiki/Pearson_distribution

    The first is the square of the skewness: β 1 = γ 1 where γ 1 is the skewness, or third standardized moment. The second is the traditional kurtosis, or fourth standardized moment: β 2 = γ 2 + 3. (Modern treatments define kurtosis γ 2 in terms of cumulants instead of moments, so that for a normal distribution we have γ 2 = 0 and β 2 = 3.

  4. Coskewness - Wikipedia

    en.wikipedia.org/wiki/Coskewness

    where S X is the skewness of X and is the standard deviation of X. It follows that the sum of two random variables can be skewed (S X+Y ≠ 0) even if both random variables have zero skew in isolation (S X = 0 and S Y = 0). The standardized rank coskewness RS(X, Y, Z) satisfies the following properties: [4]

  5. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/.../Pearson_correlation_coefficient

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  6. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    D'Agostino's K-squared test is a goodness-of-fit normality test based on a combination of the sample skewness and sample kurtosis, as is the Jarque–Bera test for normality. For non-normal samples, the variance of the sample variance depends on the kurtosis; for details, please see variance .

  7. Nonparametric skew - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_skew

    The nonparametric skew is one third of the Pearson 2 skewness coefficient and lies between −1 and +1 for any distribution. [5] [6] This range is implied by the fact that the mean lies within one standard deviation of any median. [7] Under an affine transformation of the variable (X), the value of S does not change except for a possible change ...

  8. Skew normal distribution - Wikipedia

    en.wikipedia.org/wiki/Skew_normal_distribution

    The exponentially modified normal distribution is another 3-parameter distribution that is a generalization of the normal distribution to skewed cases. The skew normal still has a normal-like tail in the direction of the skew, with a shorter tail in the other direction; that is, its density is asymptotically proportional to for some positive .

  9. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    In the following, { x i } denotes a sample of n observations, g 1 and g 2 are the sample skewness and kurtosis, m j ’s are the j-th sample central moments, and ¯ is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as √ β 1 and β 2 respectively.