When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    For instance, ideally the solution of a differential equation discretized via a regular grid will converge to the solution of the continuous equation as the grid spacing goes to zero, and if so the asymptotic rate and order of that convergence are important properties of the gridding method.

  3. Secant method - Wikipedia

    en.wikipedia.org/wiki/Secant_method

    In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .

  4. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.

  5. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    This method does not require the computation (nor the existence) of a derivative, but the price is slower convergence (the order of convergence is the golden ratio, approximately 1.62 [2]). A generalization of the secant method in higher dimensions is Broyden's method.

  6. Regula falsi - Wikipedia

    en.wikipedia.org/wiki/Regula_falsi

    That problem isn't unique to regula falsi: Other than bisection, all of the numerical equation-solving methods can have a slow-convergence or no-convergence problem under some conditions. Sometimes, Newton's method and the secant method diverge instead of converging – and often do so under the same conditions that slow regula falsi's convergence.

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The rate of convergence is distinguished from the number of iterations required to reach a given accuracy. For example, the function f ( x ) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically.

  8. Fixed-point iteration - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_iteration

    The fixed point iteration x n+1 = cos x n with initial value x 1 = −1.. An attracting fixed point of a function f is a fixed point x fix of f with a neighborhood U of "close enough" points around x fix such that for any value of x in U, the fixed-point iteration sequence , (), (()), ((())), … is contained in U and converges to x fix.

  9. Aitken's delta-squared process - Wikipedia

    en.wikipedia.org/wiki/Aitken's_delta-squared_process

    In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.