Search results
Results From The WOW.Com Content Network
In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G. For instance, a graph is planar if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with ...
[2] [3] After a third chapter relating the crossing number to graph parameters including skewness, bisection width, thickness, and (via the Albertson conjecture) the chromatic number, the final chapter of part I concerns the computational complexity of finding minimum-crossing graph drawings, including the results that the problem is both NP ...
Graph drawing also can be said to encompass problems that deal with the crossing number and its various generalizations. The crossing number of a graph is the minimum number of intersections between edges that a drawing of the graph in the plane must contain. For a planar graph, the crossing number is zero by definition. Drawings on surfaces ...
For each fixed choice of m, the truth of the conjecture for all K m,n can be verified by testing only a finite number of choices of n. [15] More generally, it has been proven that every complete bipartite graph requires a number of crossings that is (for sufficiently large graphs) at least 83% of the number given by the Zarankiewicz bound.
The set of edges of a given graph G, sometimes denoted by E(G). edgeless graph The edgeless graph or totally disconnected graph on a given set of vertices is the graph that has no edges. It is sometimes called the empty graph, but this term can also refer to a graph with no vertices.
For instance, the Szemerédi–Trotter theorem, an upper bound on the number of incidences that are possible between given numbers of points and lines in the plane, follows by constructing a graph whose vertices are the points and whose edges are the segments of lines between incident points. If there were more incidences than the Szemerédi ...
Since each line segment lies on one of m lines, and any two lines intersect in at most one point, the crossing number of this graph is at most the number of points where two lines intersect, which is at most m(m − 1)/2. The crossing number inequality implies that either e ≤ 7.5n, or that m(m − 1)/2 ≥ e 3 / 33.75n 2.
A simple proof of this follows from the crossing number inequality: [15] if cells have a total of + edges, one can form a graph with nodes (one per cell) and edges (one per pair of consecutive cells on the same line). The edges of this graph can be drawn as curves that do not cross within the cells corresponding to their endpoints, and then ...