Search results
Results From The WOW.Com Content Network
In probability theory, a probability space or a probability triple (,,) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: [1] [2]
The name density matrix itself relates to its classical correspondence to a phase-space probability measure (probability distribution of position and momentum) in classical statistical mechanics, which was introduced by Eugene Wigner in 1932. [3]
A stochastic process is defined as a collection of random variables defined on a common probability space (,,), where is a sample space, is a -algebra, and is a probability measure; and the random variables, indexed by some set , all take values in the same mathematical space , which must be measurable with respect to some -algebra .
A measurable subset of a standard probability space is a standard probability space. It is assumed that the set is not a null set, and is endowed with the conditional measure. See (Rokhlin 1952, Sect. 2.3 (p. 14)) and (Haezendonck 1973, Proposition 5). Every probability measure on a standard Borel space turns it into a standard probability space.
A random experiment is described or modeled by a mathematical construct known as a probability space. A probability space is constructed and defined with a specific kind of experiment or trial in mind. A mathematical description of an experiment consists of three parts: A sample space, Ω (or S), which is the set of all possible outcomes.
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
That is, the probability function f(x) lies between zero and one for every value of x in the sample space Ω, and the sum of f(x) over all values x in the sample space Ω is equal to 1. An event is defined as any subset E {\displaystyle E\,} of the sample space Ω {\displaystyle \Omega \,} .
Let (,,) be a probability space and let be an index set with a total order (often , +, or a subset of +).. For every let be a sub-σ-algebra of .Then := is called a filtration, if for all .