Search results
Results From The WOW.Com Content Network
A nuclear reactor core is the portion of a nuclear reactor containing the nuclear fuel components where the nuclear reactions take place and the heat is generated. [1] Typically, the fuel will be low- enriched uranium contained in thousands of individual fuel pins.
In a CANDU reactor, this also allows individual fuel elements to be situated within the reactor core that are best suited to the amount of U-235 in the fuel element. The amount of energy extracted from nuclear fuel is called its burnup, which is expressed in terms of the heat energy produced per initial unit of fuel weight. Burnup is commonly ...
An example of a heavy water reactor is Canada's CANDU reactor. Liquid metal cooled reactor - utilizes a liquid metal, such as sodium or a lead-bismuth alloy to cool the reactor core. Molten salt reactor - salts, typically fluorides of the alkali metals and of the alkali earth metals, are used as the coolant. Operation is similar to metal-cooled ...
Seaborg Technologies is developing the core for a compact molten-salt reactor (CMSR). The CMSR is a high temperature, single salt, thermal MSR designed to go critical on commercially available low enriched uranium. The CMSR design is modular, and uses proprietary NaOH moderator. [38] [70] The reactor core is estimated to be replaced every 12 ...
In its central part, the reactor's core produces heat due to nuclear fission. With this heat, a coolant is heated as it is pumped through the reactor and thereby removes the energy from the reactor. The heat from nuclear fission is used to raise steam, which runs through turbines, which in turn power the electrical generators.
The reactor well can be flooded and is straddled by pools separated by gates on either side for storing reactor hardware normally placed above the fuel rods, and for fuel storage. A refueling platform has a specialized telescoping mast for lifting and lowering fuel rod assemblies with precision through the "cattle chute" to the reactor core ...
A modern BWR fuel assembly comprises 74 to 100 fuel rods, and there are up to approximately 800 assemblies in a reactor core, holding up to approximately 140 short tons of low-enriched uranium. The number of fuel assemblies in a specific reactor is based on considerations of desired reactor power output, reactor core size and reactor power density.
The molten mass of reactor core dripped under the reactor vessel and now is solidified in forms of stalactites, stalagmites, and lava flows; the best-known formation is the "Elephant's Foot", located under the bottom of the reactor in a Steam Distribution Corridor. [16] [17] The corium was formed in three phases.