Ad
related to: 5x5 magic square generator 3x3 free
Search results
Results From The WOW.Com Content Network
The smallest (and unique up to rotation and reflection) non-trivial case of a magic square, order 3. In mathematics, especially historical and recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of the numbers in each row, each column, and both main diagonals are the same.
The Siamese method, or De la Loubère method, is a simple method to construct any size of n-odd magic squares (i.e. number squares in which the sums of all rows, columns and diagonals are identical). The method was brought to France in 1688 by the French mathematician and diplomat Simon de la Loubère , [ 1 ] as he was returning from his 1687 ...
The number zero for n = 6 is an example of a more general phenomenon: associative magic squares do not exist for values of n that are singly even (equal to 2 modulo 4). [3] Every associative magic square of even order forms a singular matrix, but associative magic squares of odd order can be singular or nonsingular. [4]
A Graeco-Latin square or Euler square or pair of orthogonal Latin squares of order n over two sets S and T (which may be the same), each consisting of n symbols, is an n × n arrangement of cells, each cell containing an ordered pair (s, t), where s is in S and t is in T, such that every row and every column contains each element of S and each element of T exactly once, and that no two cells ...
The magic constant or magic sum of a magic square is the sum of numbers in any row, column, or diagonal of the magic square. For example, the magic square shown below has a magic constant of 15. For a normal magic square of order n – that is, a magic square which contains the numbers 1, 2, ..., n 2 – the magic constant is = +.
A geometric magic square, often abbreviated to geomagic square, is a generalization of magic squares invented by Lee Sallows in 2001. [1] A traditional magic square is a square array of numbers (almost always positive integers ) whose sum taken in any row, any column, or in either diagonal is the same target number .
Start by creating a (2n+1)-by-(2n+1) square array consisting of n+1 rows of Ls, 1 row of Us, and; n-1 rows of Xs, and then exchange the U in the middle with the L above it. Each letter represents a 2x2 block of numbers in the finished square.
God's algorithm is a notion originating in discussions of ways to solve the Rubik's Cube puzzle, [1] but which can also be applied to other combinatorial puzzles and mathematical games. [2]