When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Action spectrum - Wikipedia

    en.wikipedia.org/wiki/Action_spectrum

    Absorbance spectra of free chlorophyll a (blue) and b (red) in a solvent. The action spectra of chlorophyll molecules are slightly modified in vivo depending on specific pigment-protein interactions. An action spectrum is a graph of the rate of biological effectiveness plotted against wavelength of light. [1]

  3. Chlorophyll - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll

    Synthetic chlorophyll is registered as a food additive colorant, and its E number is E140. Chefs use chlorophyll to color a variety of foods and beverages green, such as pasta and spirits. Absinthe gains its green color naturally from the chlorophyll introduced through the large variety of herbs used in its production. [46]

  4. Talk:Chlorophyll - Wikipedia

    en.wikipedia.org/wiki/Talk:Chlorophyll

    The article on chlorophyll doesn't address the enormous popularity of consumer products infused with chlorophyll in the early 1950s — everything from toothpaste to dog food. Once scientifically discredited, the chlorophyll fad disappeared, but its significance as a cultural and product phenomenon of its time is important and deserves ...

  5. Light-harvesting complexes of green plants - Wikipedia

    en.wikipedia.org/wiki/Light-harvesting_complexes...

    The light-harvesting complex (or antenna complex; LH or LHC) is an array of protein and chlorophyll molecules embedded in the thylakoid membrane of plants and cyanobacteria, which transfer light energy to one chlorophyll a molecule at the reaction center of a photosystem. The antenna pigments are predominantly chlorophyll b, xanthophylls, and ...

  6. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)

  7. Trophic state index - Wikipedia

    en.wikipedia.org/wiki/Trophic_state_index

    Relationships between Trophic State Index, chlorophyll, phosphorus, Secchi depth, and trophic class (after Carlson 1996) [4] Trophic State Index Chlorophyll (μg/L) Phosphorus (μg/L) Secchi depth (m) Trophic Class < 30—40 0—2.6 0—12 > 8—4 Oligotrophic or hipotrophic 40—50 2.6—7.3 12—24 4—2 Mesotrophic 50—70 7.3—56 24—96

  8. Chlorophyll a - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll_a

    Chlorophyll a is a specific form of chlorophyll used in oxygenic photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light, and it is a poor absorber of green and near-green portions of the spectrum. [ 3 ]

  9. Chlorophyll fluorescence - Wikipedia

    en.wikipedia.org/wiki/Chlorophyll_fluorescence

    Gitelson (1999) states, "The ratio between chlorophyll fluorescence at 735 nm and the wavelength range 700nm to 710 nm, F735/F700 was found to be linearly proportional to the chlorophyll content (with determination coefficient, r2, more than 0.95) and thus this ratio can be used as a precise indicator of chlorophyll content in plant leaves."