Ad
related to: hilbert spaces explained
Search results
Results From The WOW.Com Content Network
A Hilbert space is a vector space equipped with an inner product operation, which allows lengths and angles to be defined. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used. A Hilbert space is a special case of a Banach space.
A feature map is a map :, where is a Hilbert space which we will call the feature space. The first sections presented the connection between bounded/continuous evaluation functions, positive definite functions, and integral operators and in this section we provide another representation of the RKHS in terms of feature maps.
The Hilbert Curve is commonly used among rendering images or videos. Common programs such as Blender and Cinema 4D use the Hilbert Curve to trace the objects, and render the scene. [citation needed] The slicer software used to convert 3D models into toolpaths for a 3D printer typically has the Hilbert curve as an option for an infill pattern.
The Hilbert space of a composite system is the Hilbert space tensor product of the state spaces associated with the component systems. For a non-relativistic system consisting of a finite number of distinguishable particles, the component systems are the individual particles.
It is essentially the same universal property shared by all definitions of tensor products, irrespective of the spaces being tensored: this implies that any space with a tensor product is a symmetric monoidal category, and Hilbert spaces are a particular example thereof.
Two Hilbert spaces V and W may form a third space V ⊗ W by a tensor product. In quantum mechanics, this is used for describing composite systems. If a system is composed of two subsystems described in V and W respectively, then the Hilbert space of the
The resulting direct sum is a Hilbert space which contains the given Hilbert spaces as mutually orthogonal subspaces. If infinitely many Hilbert spaces H i {\displaystyle H_{i}} for i ∈ I {\displaystyle i\in I} are given, we can carry out the same construction; notice that when defining the inner product, only finitely many summands will be ...
The Hilbert projection theorem guarantees that this unique minimum point exists whenever is a non-empty closed and convex subset of a Hilbert space. However, such a minimum point can also exist in non-convex or non-closed subsets as well; for instance, just as long is C {\displaystyle C} is non-empty, if x ∈ C {\displaystyle x\in C} then min ...