Search results
Results From The WOW.Com Content Network
The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple. [ 7 ] Also useful in the quantum mechanics of multiparticle systems, the general Pauli group G n is defined to consist of all n -fold tensor products of Pauli matrices.
The eigenvectors may be found by the usual methods of linear algebra, but a convenient trick is to note that a Pauli spin matrix is an involutory matrix, that is, the square of the above matrix is the identity matrix. Thus a (matrix) solution to the eigenvector problem with eigenvalues of ±1 is simply 1 ± S u. That is,
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm. [11] (For more general matrices, the QR algorithm yields the Schur decomposition first, from which the eigenvectors can be obtained by a backsubstitution procedure. [13])
This method of generalizing the Pauli matrices refers to a generalization from a single 2-level system to multiple such systems. In particular, the generalized Pauli matrices for a group of N {\displaystyle N} qubits is just the set of matrices generated by all possible products of Pauli matrices on any of the qubits.
The Pauli matrices are traceless and orthogonal to one another with respect to the Hilbert–Schmidt inner product, and so the coordinates (,,) of the state are the expectation values of the three von Neumann measurements defined by the Pauli matrices.
the matrix exponential reduces to a plain product of the exponentials of the two respective pieces. This is a formula often used in physics, as it amounts to the analog of Euler's formula for Pauli spin matrices, that is rotations of the doublet representation of the group SU(2).
The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...