Search results
Results From The WOW.Com Content Network
Form drag depends on the longitudinal section [clarification needed] of the body. A prudent choice of body profile is essential for a low drag coefficient. Streamlines should be continuous, and separation of the boundary layer with its attendant vortices should be avoided. Form drag includes interference drag, caused by the mixing of airflow ...
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Parasitic drag, or profile drag, is the sum of viscous pressure drag (form drag) and drag due to surface roughness (skin friction drag). Additionally, the presence of multiple bodies in relative proximity may incur so called interference drag , which is sometimes described as a component of parasitic drag.
The equation is precise – it simply provides the definition of (drag coefficient), which varies with the Reynolds number and is found by experiment. Of particular importance is the u 2 {\displaystyle u^{2}} dependence on flow velocity, meaning that fluid drag increases with the square of flow velocity.
The above equation, which is derived from Prandtl's one-seventh-power law, [6] provided a reasonable approximation of the drag coefficient of low-Reynolds-number turbulent boundary layers. [7] Compared to laminar flows, the skin friction coefficient of turbulent flows lowers more slowly as the Reynolds number increases.
A form factor (i) greater than 1 indicates the particular projectile exhibits more drag than the applied reference projectile shape. [66] In general the G1 model yields comparatively high BC values and is often used by the sporting ammunition industry.
Jean le Rond d'Alembert (1717-1783) From experiments it is known that there is always – except in case of superfluidity – a drag force for a body placed in a steady fluid onflow. The figure shows the drag coefficient C d for a sphere as a function of Reynolds number Re, as obtained from laboratory experiments. The dark line is for a sphere ...
In mechanics and aerodynamics, the drag area of an object represents the effective size of the object as it is "seen" by the fluid flow around it. The drag area is usually expressed as a product , where is a representative area of the object, and is the drag coefficient, which represents what shape it has and how streamlined it is.