When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:

  4. Jacobi triple product - Wikipedia

    en.wikipedia.org/wiki/Jacobi_triple_product

    The Jacobi triple product identity is the Macdonald identity for the affine root system of type A 1, ... (1965), "An Enumerative Proof of An Identity of Jacobi", ...

  5. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    To elucidate the connection with the triple product rule, consider the point p 1 at time t and its corresponding point (with the same height) p̄ 1 at t+Δt. Define p 2 as the point at time t whose x-coordinate matches that of p̄ 1 , and define p̄ 2 to be the corresponding point of p 2 as shown in the figure on the right.

  8. Jacobi identity - Wikipedia

    en.wikipedia.org/wiki/Jacobi_identity

    Thus, the Jacobi identity for Lie algebras states that the action of any element on the algebra is a derivation. That form of the Jacobi identity is also used to define the notion of Leibniz algebra. Another rearrangement shows that the Jacobi identity is equivalent to the following identity between the operators of the adjoint representation:

  9. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.