When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. MHV amplitudes - Wikipedia

    en.wikipedia.org/wiki/MHV_Amplitudes

    In theoretical particle physics, maximally helicity violating amplitudes (MHV) are amplitudes with massless external gauge bosons, where gauge bosons have a particular helicity and the other two have the opposite helicity. These amplitudes are called MHV amplitudes, because at tree level, they violate helicity conservation to the maximum extent ...

  3. Plant bioacoustics - Wikipedia

    en.wikipedia.org/wiki/Plant_bioacoustics

    A possible mechanism behind this is the activation of mechanoreceptors by sound waves, which causes a flux of Ca 2+ into the plant cell causing it to depolarize [11] Because of the specific frequencies produced by the pollinators’ wings, perhaps only a distinct amount of Ca 2+ enters the cell, which would ultimately determine the plant ...

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  5. Conjugate variables - Wikipedia

    en.wikipedia.org/wiki/Conjugate_variables

    Time and frequency: the longer a musical note is sustained, the more precisely we know its frequency, but it spans a longer duration and is thus a more-distributed event or 'instant' in time. Conversely, a very short musical note becomes just a click, and so is more temporally-localized, but one can't determine its frequency very accurately. [3]

  6. Kubo formula - Wikipedia

    en.wikipedia.org/wiki/Kubo_formula

    The Kubo formula, named for Ryogo Kubo who first presented the formula in 1957, [1] [2] is an equation which expresses the linear response of an observable quantity due to a time-dependent perturbation.

  7. Time-resolved spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Time-resolved_spectroscopy

    In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.

  8. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]

  9. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)