Search results
Results From The WOW.Com Content Network
The Boolean function is said to be linearly separable provided these two sets of points are linearly separable. The number of distinct Boolean functions is where n is the number of variables passed into the function. [3] Such functions are also called linear threshold logic, or perceptrons.
Kirchberger's theorem is a theorem in discrete geometry, on linear separability.The two-dimensional version of the theorem states that, if a finite set of red and blue points in the Euclidean plane has the property that, for every four points, there exists a line separating the red and blue points within those four, then there exists a single line separating all the red points from all the ...
The "trouble" with the trivial topology is its poor separation properties: its Kolmogorov quotient is the one-point space. A first-countable , separable Hausdorff space (in particular, a separable metric space) has at most the continuum cardinality c {\displaystyle {\mathfrak {c}}} .
If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
A linear space is a basic structure in incidence geometry. A linear space consists of a set of elements called points, and a set of elements called lines. Each line is a distinct subset of the points. The points in a line are said to be incident with the line. Each two points are in a line, and any two lines may have no more than one point in ...
Then two points x and y in X are topologically distinguishable if they do not have exactly the same neighbourhoods (or equivalently the same open neighbourhoods); that is, at least one of them has a neighbourhood that is not a neighbourhood of the other (or equivalently there is an open set that one point belongs to but the other point does not).
Separable filter, a product of two or more simple filters in image processing; Separable ordinary differential equation, a class of equations that can be separated into a pair of integrals; Separable partial differential equation, a class of equations that can be broken down into differential equations in fewer independent variables