Search results
Results From The WOW.Com Content Network
Implementations of the fork–join model will typically fork tasks, fibers or lightweight threads, not operating-system-level "heavyweight" threads or processes, and use a thread pool to execute these tasks: the fork primitive allows the programmer to specify potential parallelism, which the implementation then maps onto actual parallel execution. [1]
For a process to start the execution of a different program, it first forks to create a copy of itself. Then, the copy, called the "child process", calls the exec system call to overlay itself with the other program: it ceases execution of its former program in favor of the other. The fork operation creates a separate address space for the ...
fork() is the name of the system call that the parent process uses to "divide" itself ("fork") into two identical processes. After calling fork(), the created child process is an exact copy of the parent except for the return value of the fork() call. This includes open files, register state, and all memory allocations, which includes the ...
Illustration of the dining philosophers problem. Each philosopher has a bowl of spaghetti and can reach two of the forks. In computer science, the dining philosophers problem is an example problem often used in concurrent algorithm design to illustrate synchronization issues and techniques for resolving them.
At a fork, the process creates one or more additional processes, indicated by a bar with one incoming path and two or more outgoing paths. At a join, two or more processes continue as a single process, indicated by a bar with several incoming paths and one outgoing path. All processes must complete before the single process continues. [22]
The concept behind a fork bomb — the processes continually replicate themselves, potentially causing a denial of service. In computing, a fork bomb (also called rabbit virus) is a denial-of-service (DoS) attack wherein a process continually replicates itself to deplete available system resources, slowing down or crashing the system due to resource starvation.
A child process inherits most of its attributes, such as file descriptors, from its parent. In Unix, a child process is typically created as a copy of the parent, using the fork system call. The child process can then overlay itself with a different program (using exec) as required. [1]
Copy-on-write (COW), also called implicit sharing [1] or shadowing, [2] is a resource-management technique [3] used in programming to manage shared data efficiently. Instead of copying data right away when multiple programs use it, the same data is shared between programs until one tries to modify it.