Ad
related to: iii v lattice constant
Search results
Results From The WOW.Com Content Network
Aluminium antimonide (AlSb) is a semiconductor of the group III-V family containing aluminium and antimony. The lattice constant is 0.61 nm. The indirect bandgap is approximately 1.6 eV at 300 K, whereas the direct band gap is 2.22 eV. Its electron mobility is 200 cm 2 ·V −1 ·s −1 and hole mobility 400 cm 2 ·V −1 ·s −1 at 300 K.
A simple cubic crystal has only one lattice constant, the distance between atoms, but in general lattices in three dimensions have six lattice constants: the lengths a, b, and c of the three cell edges meeting at a vertex, and the angles α, β, and γ between those edges. The crystal lattice parameters a, b, and c have the
Indium and gallium are group III elements of the periodic table while arsenic is a group V element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.
Gallium arsenide antimonide, also known as gallium antimonide arsenide or GaAsSb (Ga As (1-x) Sb x), is a ternary III-V semiconductor compound; x indicates the fractions of arsenic and antimony in the alloy. GaAsSb refers generally to any composition of the alloy.
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
Gallium antimonide (GaSb) is a semiconducting compound of gallium and antimony of the III-V family. It has a room temperature lattice constant of about 0.610 nm. [1] It has a room temperature direct bandgap of approximately 0.73 eV. [1] [2] [3]
Aluminium arsenide is a III-V compound semiconductor material and is an advantageous material for the manufacture of optoelectronic devices, such as light emitting diodes. Aluminium arsenide can be prepared using well-known methods, such as liquid and vapor-phase epitaxy techniques or melt-growth techniques.
The bandgap and lattice constant of InAsSb alloys are between those of pure InAs (a = 0.606 nm, E g = 0.35 eV) and InSb (a = 0.648 nm, E g = 0.17 eV). [3] Over all compositions, the band gap is direct, like in InAs and InSb. The direct bandgap displays strong bowing, reaching a minimum with respect to composition at approximately x = 0.62 at ...
Ad
related to: iii v lattice constant