When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. pandas (software) - Wikipedia

    en.wikipedia.org/wiki/Pandas_(software)

    However, if data is a DataFrame, then data['a'] returns all values in the column(s) named a. To avoid this ambiguity, Pandas supports the syntax data.loc['a'] as an alternative way to filter using the index. Pandas also supports the syntax data.iloc[n], which always takes an integer n and returns the nth value, counting from 0. This allows a ...

  3. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    IWE combines Word2vec with a semantic dictionary mapping technique to tackle the major challenges of information extraction from clinical texts, which include ambiguity of free text narrative style, lexical variations, use of ungrammatical and telegraphic phases, arbitrary ordering of words, and frequent appearance of abbreviations and acronyms ...

  4. Wide and narrow data - Wikipedia

    en.wikipedia.org/wiki/Wide_and_narrow_data

    The pandas package in Python implements this operation as "melt" function which converts a wide table to a narrow one. The process of converting a narrow table to wide table is generally referred to as "pivoting" in the context of data transformations.

  5. Dictionary coder - Wikipedia

    en.wikipedia.org/wiki/Dictionary_coder

    A dictionary coder, also sometimes known as a substitution coder, is a class of lossless data compression algorithms which operate by searching for matches between the text to be compressed and a set of strings contained in a data structure (called the 'dictionary') maintained by the encoder. When the encoder finds such a match, it substitutes ...

  6. k-SVD - Wikipedia

    en.wikipedia.org/wiki/K-SVD

    In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data.

  7. Machine-readable dictionary - Wikipedia

    en.wikipedia.org/wiki/Machine-readable_dictionary

    Machine-readable dictionary (MRD) is a dictionary stored as machine-readable data instead of being printed on paper. It is an electronic dictionary and lexical database . A machine-readable dictionary is a dictionary in an electronic form that can be loaded in a database and can be queried via application software.

  8. Sparse dictionary learning - Wikipedia

    en.wikipedia.org/wiki/Sparse_dictionary_learning

    Sparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims to find a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms, and they compose a dictionary.

  9. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...