Ad
related to: angle area calculator
Search results
Results From The WOW.Com Content Network
The solid angle of an object that is very far away is roughly proportional to the ratio of area to squared distance. Here "area" means the area of the object when projected along the viewing direction. Any area on a sphere which is equal in area to the square of its radius, when observed from its center, subtends precisely one steradian.
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
The solid angle subtended is the same as that of a cone with the same projected area. In the SI, solid angle is considered to be a dimensionless quantity, the ratio of the area projected onto a surrounding sphere and the square of the sphere's radius. This is the number of square radians in the solid angle.
The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of ): a = R 2 2 ( θ − sin β‘ θ ) {\displaystyle a={\tfrac {R^{2}}{2}}\left(\theta -\sin \theta \right)}
The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length β β , which has area 1. There are several ways to calculate the area of an arbitrary triangle.
Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each have an angle of dπ at the centre of the circle), each with an area of β 1 / 2 β · r 2 · dπ (derived from the expression for the area of a triangle: β 1 / 2 β · a · b · sinπ ...
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
The area of a triangle is proportional to the deficit of its angle sum from 180°. Hyperbolic triangles also have some properties that are not found in other geometries: Some hyperbolic triangles have no circumscribed circle , this is the case when at least one of its vertices is an ideal point or when all of its vertices lie on a horocycle or ...