Search results
Results From The WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Caldrini (1491) is the earliest printed example of long division, known as the Danda method in medieval Italy, [4] and it became more practical with the introduction of decimal notation for fractions by Pitiscus (1608). The specific algorithm in modern use was introduced by Henry Briggs c. 1600. [5]
The story of continued fractions begins with the Euclidean algorithm, [4] a procedure for finding the greatest common divisor of two natural numbers m and n.That algorithm introduced the idea of dividing to extract a new remainder – and then dividing by the new remainder repeatedly.
Animation showing an application of the Euclidean algorithm to find the greatest common divisor of 62 and 36, which is 2. A more efficient method is the Euclidean algorithm, a variant in which the difference of the two numbers a and b is replaced by the remainder of the Euclidean division (also called division with remainder) of a by b.
The continued fraction method is based on Dixon's factorization method. It uses convergents in the regular continued fraction expansion of , +. Since this is a quadratic irrational, the continued fraction must be periodic (unless n is square, in which case the factorization is obvious).
In abstract algebra, given a magma with binary operation ∗ (which could nominally be termed multiplication), left division of b by a (written a \ b) is typically defined as the solution x to the equation a ∗ x = b, if this exists and is unique. Similarly, right division of b by a (written b / a) is the solution y to the equation y ∗ a = b ...
In mathematics, the Euclidean algorithm, [note 1] or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers, the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements (c. 300 BC).
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...