Search results
Results From The WOW.Com Content Network
Ammonium nitrate on strong heating yields dinitrogen oxide ("laughing gas") and water. Ammonium nitrite on heating yields nitrogen gas and water. Barium azide-"Ba(N 3)"on heating yields barium metal and nitrogen gas. Sodium azide on heating at 300 °C (573 K; 572 °F) violently decomposes to nitrogen and metallic sodium.
In real world applications, complete combustion does not typically occur. Chemistry dictates that dissociation and kinetics will change the composition of the products. There are a number of programs available that can calculate the adiabatic flame temperature taking into account dissociation through equilibrium constants (Stanjan, NASA CEA, AFTP).
Ethanol-water mixtures have less volume than the sum of their individual components at the given fractions. Mixing equal volumes of ethanol and water results in only 1.92 volumes of mixture. [76] [81] Mixing ethanol and water is exothermic, with up to 777 J/mol [82] being released at 298 K. Hydrogen bonding in solid ethanol at −186 °C
Yarwood and Castle have their transformer oil on page 37. Paper: Ordinary Paper Engineeringtoolbox 0.05 [5] Yarwood and Castle 0.125 [73] Oil Impregnated Paper 0.180 — 0.186 [32] 298 [5] 291.15 294.7 — 385.2 The oil-impregnated paper was about 0.05 inches thick and it was loaded under about 2 PSI. TPRC Volume 2, page 1127.
The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...
The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C. Of common substances, only that of ammonia is higher.