Search results
Results From The WOW.Com Content Network
Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set". [1] However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty).
Although the empty set has Lebesgue measure zero, there are also non-empty sets which are null. For example, any non-empty countable set of real numbers has Lebesgue measure zero and therefore is null. More generally, on a given measure space = (,,) a null set is a set such that () =
In set theory, the empty set, that is, the set with zero elements, denoted "{}" or "∅", may also be called null set. [3] [5] In measure theory, a null set is a (possibly nonempty) set with zero measure. A null space of a mapping is the part of the domain that is mapped into the null element of the image (the inverse image of the null element).
The empty set is a subset of every set (the statement that all elements of the empty set are also members of any set A is vacuously true). The set of all subsets of a given set A is called the power set of A and is denoted by or (); the "P" is sometimes in a script font: ℘ .
Let S be a non-empty set of real numbers.. A real number x is called an upper bound for S if x ≥ s for all s ∈ S.; A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S.
Note that a null set is not necessarily an empty set. Common notations for the empty set include "{}", "∅", and "". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets (and not related in any way to the Greek letter Φ). [2] Empty sets ...
For any non-empty set X, P = { X} is a partition of X, called the trivial partition. Particularly, every singleton set {x} has exactly one partition, namely { {x} }. For any non-empty proper subset A of a set U, the set A together with its complement form a partition of U, namely, { A, U ∖ A}.
Let be a set and a nonempty family of subsets of ; that is, is a nonempty subset of the power set of . Then is said to have the finite intersection property if every nonempty finite subfamily has nonempty intersection; it is said to have the strong finite intersection property if that intersection is always infinite.