Search results
Results From The WOW.Com Content Network
A polar molecule has a net dipole as a result of the opposing charges (i.e. having partial positive and partial negative charges) from polar bonds arranged asymmetrically. Water (H 2 O) is an example of a polar molecule since it has a slight positive charge on one side and a slight negative charge on the other. The dipoles do not cancel out ...
An example of these amphiphilic molecules is the lipids that comprise the cell membrane. Another example is soap, which has a hydrophilic head and a hydrophobic tail, allowing it to dissolve in both water and oil. Hydrophilic and hydrophobic molecules are also known as polar molecules and nonpolar molecules, respectively. Some hydrophilic ...
The polarity, dipole moment, polarizability and hydrogen bonding of a solvent determines what type of compounds it is able to dissolve and with what other solvents or liquid compounds it is miscible. Generally, polar solvents dissolve polar compounds best and non-polar solvents dissolve non-polar compounds best; hence "like dissolves like".
Water (H 2 O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue.It is by far the most studied chemical compound [20] and is described as the "universal solvent" [21] and the "solvent of life". [22]
Polar solvents are often found to have a high dielectric constant, although other solvent scales are also used to classify solvent polarity. Polar solvents can be used to dissolve inorganic or ionic compounds such as salts. The conductivity of a solution depends on the solvation of its ions. Nonpolar solvents cannot solvate ions, and ions will ...
An example of a dipole–dipole interaction can be seen in hydrogen chloride (HCl): the positive end of a polar molecule will attract the negative end of the other molecule and influence its position. Polar molecules have a net attraction between them. Examples of polar molecules include hydrogen chloride (HCl) and chloroform (CHCl 3).
The structure of a nitrile: the functional group is highlighted blue. In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group.The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH 3 CH 2 C≡N is called "propionitrile" (or propanenitrile). [1]
Dilithium, Li 2, is a strongly electrophilic, diatomic molecule comprising two lithium atoms covalently bonded together. Li 2 has been observed in the gas phase.It has a bond order of 1, an internuclear separation of 267.3 pm and a bond energy of 102 kJ/mol or 1.06 eV in each bond. [1]