When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1] Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells, meeting at right angles.

  3. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

  4. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    The convex regular 4-polytopes are the four-dimensional analogues of the Platonic solids. The most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube. The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius.

  5. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    The tesseract is one of 6 convex regular 4-polytopes. In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope.They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.

  6. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.

  7. 16-cell - Wikipedia

    en.wikipedia.org/wiki/16-cell

    The 16-cell is the second in the sequence of 6 convex regular 4-polytopes (in order of size and complexity). [a]Each of its 4 successor convex regular 4-polytopes can be constructed as the convex hull of a polytope compound of multiple 16-cells: the 16-vertex tesseract as a compound of two 16-cells, the 24-vertex 24-cell as a compound of three 16-cells, the 120-vertex 600-cell as a compound of ...

  8. 24-cell - Wikipedia

    en.wikipedia.org/wiki/24-cell

    Net. In four-dimensional geometry, the 24-cell is the convex regular 4-polytope [1] (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C 24, or the icositetrachoron, [2] octaplex (short for "octahedral complex"), icosatetrahedroid, [3] octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.

  9. Crucifixion (Corpus Hypercubus) - Wikipedia

    en.wikipedia.org/wiki/Crucifixion_(Corpus_Hyper...

    The net of the hypercube is a three-dimensional representation of it, similar to how Christ is a human form of God that is more relatable to people. The word "corpus" in the title can refer both to the body of Christ and to geometric figures, reinforcing the link Dalí makes between religion and mathematics and science. [ 6 ]