Search results
Results From The WOW.Com Content Network
The tangent lines must be equal in length for any point on the radical axis: | | = | |. If P, T 1, T 2 lie on a common tangent, then P is the midpoint of ¯.. In Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal.
The radical axis of two intersecting circles. The power diagram of the two circles is the partition of the plane into two halfplanes formed by this line. In the case n = 2, the power diagram consists of two halfplanes, separated by a line called the radical axis or chordale of the two circles. Along the radical axis, both circles have equal power.
The three radical axes meet in a single point, the radical center, for the following reason. The radical axis of a pair of circles is defined as the set of points that have equal power h with respect to both circles. For example, for every point P on the radical axis of circles 1 and 2, the powers to each circle are equal: h 1 = h 2.
The radical axis of two circles is the set of points of equal tangents, or more generally, equal power. Circles may be inverted into lines and circles into circles. [clarification needed] If two circles are internally tangent, they remain so if their radii are increased or decreased by the same amount.
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
Brianchon's theorem can be proved by the idea of radical axis or reciprocation. To prove it take an arbitrary length (MN) and carry it on the tangents starting from the contact points: PL = RJ = QH = MN etc. Draw circles a, b, c tangent to opposite sides of the hexagon at the created points (H,W), (J,V) and (L,Y) respectively.
The line connecting these common intersection points is the radical axis for all three circles. The two isodynamic points are inverses of each other relative to the circumcircle of the triangle. The centers of these three circles fall on a single line (the Lemoine line). This line is perpendicular to the radical axis, which is the line ...
Möbius geometry is the study of "Euclidean space with a point added at infinity", or a "Minkowski (or pseudo-Euclidean) space with a null cone added at infinity".That is, the setting is a compactification of a familiar space; the geometry is concerned with the implications of preserving angles.