When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flow velocity - Wikipedia

    en.wikipedia.org/wiki/Flow_velocity

    In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):

  3. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  4. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    File:Lagrangian vs Eulerian [further explanation needed] Eulerian perspective of fluid velocity versus Lagrangian depiction of strain.. In classical field theories, the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time.

  5. Fluid - Wikipedia

    en.wikipedia.org/wiki/Fluid

    In physics, a fluid is a liquid, gas, or other material that may continuously move and deform (flow) under an applied shear stress, or external force. [1] They have zero shear modulus , or, in simpler terms, are substances which cannot resist any shear force applied to them.

  6. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    The fluid is said to be Newtonian if these matrices are related by the equation = where is a fixed 3×3×3×3 fourth order tensor that does not depend on the velocity or stress state of the fluid. Incompressible isotropic case

  7. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...

  8. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.

  9. Slip ratio (gas–liquid flow) - Wikipedia

    en.wikipedia.org/wiki/Slip_ratio_(gas–liquid_flow)

    In the homogeneous model of two-phase flow, the slip ratio is by definition assumed to be unity (no slip). It is however experimentally observed that the velocity of the gas and liquid phases can be significantly different, depending on the flow pattern (e.g. plug flow, annular flow, bubble flow, stratified flow, slug flow, churn flow). The ...