Ad
related to: median formula class 10 ncert exemplar science class 10 solutions
Search results
Results From The WOW.Com Content Network
In geometry, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side.
In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Every triangle has exactly three medians, one from each vertex, and they all intersect at the triangle's centroid .
For the 1-dimensional case, the geometric median coincides with the median.This is because the univariate median also minimizes the sum of distances from the points. (More precisely, if the points are p 1, ..., p n, in that order, the geometric median is the middle point (+) / if n is odd, but is not uniquely determined if n is even, when it can be any point in the line segment between the two ...
The median of a power law distribution x −a, with exponent a > 1 is 2 1/(a − 1) x min, where x min is the minimum value for which the power law holds [10] The median of an exponential distribution with rate parameter λ is the natural logarithm of 2 divided by the rate parameter: λ −1 ln 2.
The lower weighted median is 2 with partition sums of 0.49 and 0.5, and the upper weighted median is 3 with partition sums of 0.5 and 0.25. In the case of working with integers or non-interval measures , the lower weighted median would be accepted since it is the lower weight of the pair and therefore keeps the partitions most equal.
The median absolute deviation is a measure of statistical dispersion. Moreover, the MAD is a robust statistic , being more resilient to outliers in a data set than the standard deviation . In the standard deviation, the distances from the mean are squared, so large deviations are weighted more heavily, and thus outliers can heavily influence it.
The median of three vertices in a tree, showing the subtree formed by the union of shortest paths between the vertices. Every tree is a median graph. To see this, observe that in a tree, the union of the three shortest paths between pairs of the three vertices a, b, and c is either itself a path, or a subtree formed by three paths meeting at a single central node with degree three.
Conversely, in any median algebra, one may define an interval [,] to be the set of elements such that ,, =. One may define a graph from a median algebra by creating a vertex for each algebra element and an edge for each pair ( x , z ) {\displaystyle (x,z)} such that the interval [ x , z ] {\displaystyle [x,z]} contains no other elements.