Ads
related to: cylinder heads newsmartholidayshopping.com has been visited by 100K+ users in the past month
ebay.com has been visited by 1M+ users in the past month
Search results
Results From The WOW.Com Content Network
This reduces repair costs as a single failed head on a single cylinder can be changed instead of a larger, much more expensive unit fitting all the cylinders. Such a design also allows engine manufacturers to easily produce a 'family' of engines of different layouts and/or cylinder numbers without requiring new cylinder head designs.
A crossflow head gives better performance than a Reverse-flow cylinder head (though not as good as a uniflow), but the popular explanation put forward for this — that the gases do not have to change direction and hence are moved into and out of the cylinder more efficiently — is a simplification since there is no continuous flow because of valve opening and closing.
A hemispherical head ("hemi-head") gives an efficient combustion chamber with minimal heat loss to the head, and allows for two large valves.However, a hemi-head usually allows no more than two valves per cylinder due to the difficulty in arranging the valve gear for four valves at diverging angles, and these large valves are necessarily heavier than those in a multi-valve engine of similar ...
De Dion-Bouton engine with monobloc cylinder heads, but cylinders separate from crankcase c. 1905 [1]. A monobloc or en bloc engine is an internal-combustion piston engine some of whose major components (such as cylinder head, cylinder block, or crankcase) are formed, usually by casting, as a single integral unit, rather than being assembled later.
A Heron cylinder head, or simply Heron head, is a design for the combustion chambers of the cylinder head on an internal combustion piston engine, named for engine designer S. D. Heron. The head is machined flat, with recesses only for inlet and exhaust valves, spark plugs, injectors and so on.
The main advantage of the reverse-flow cylinder head is that both the entering inlet charge and the exiting exhaust gas cause a tendency to swirl in the same direction in the combustion chamber. [1] In a crossflow head the inlet and exhaust gases promote swirl in opposite directions so that during overlap the swirl changes directions.