Ad
related to: kinematic viscosity of fresh water graph
Search results
Results From The WOW.Com Content Network
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.
μ is the dynamic viscosity of the fluid (Pa·s or N·s/m 2 or kg/(m·s)) ν is the kinematic viscosity of the fluid (m 2 /s). The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
is the kinematic viscosity Animation of the linearized shallow-water equations for a rectangular basin, without friction and Coriolis force. The water experiences a splash which generates surface gravity waves that propagate away from the splash location and reflect off the basin walls.