When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    Seen as a function of for given , (= | =) is a probability mass function and so the sum over all (or integral if it is a conditional probability density) is 1. Seen as a function of x {\displaystyle x} for given y {\displaystyle y} , it is a likelihood function , so that the sum (or integral) over all x {\displaystyle x} need not be 1.

  3. Conditional variance - Wikipedia

    en.wikipedia.org/wiki/Conditional_variance

    Here, as usual, ⁡ stands for the conditional expectation of Y given X, which we may recall, is a random variable itself (a function of X, determined up to probability one). As a result, Var ⁡ ( YX ) {\displaystyle \operatorname {Var} (Y\mid X)} itself is a random variable (and is a function of X ).

  4. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    The area of the selection within the unit square and below the line z = xy, represents the CDF of z. This divides into two parts. The first is for 0 < x < z where the increment of area in the vertical slot is just equal to dx. The second part lies below the xy line, has y-height z/x, and incremental area dx z/x.

  5. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  6. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    Let X be a discrete random variable and its possible outcomes denoted V. For example, if X represents the value of a rolled dice then V is the set {,,,,,}. Let us assume for the sake of presentation that X is a discrete random variable, so that each value in V has a nonzero probability.

  7. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    If X = X * then the random variable X is called "real". An expectation E on an algebra A of random variables is a normalized, positive linear functional. What this means is that E[k] = k where k is a constant; E[X * X] ≥ 0 for all random variables X; E[X + Y] = E[X] + E[Y] for all random variables X and Y; and; E[kX] = kE[X] if k is a constant.

  8. Proofs related to chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Proofs_related_to_chi...

    Where and are the cdf and pdf of the corresponding random variables. Then Y = X 2 ∼ χ 1 2 . {\displaystyle Y=X^{2}\sim \chi _{1}^{2}.} Alternative proof directly using the change of variable formula

  9. Law of total covariance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_covariance

    Note: The conditional expected values E( X | Z) and E( Y | Z) are random variables whose values depend on the value of Z. Note that the conditional expected value of X given the event Z = z is a function of z. If we write E( X | Z = z) = g(z) then the random variable E( X | Z) is g(Z). Similar comments apply to the conditional covariance.