When.com Web Search

  1. Ad

    related to: origin definition geometry math meaning examples

Search results

  1. Results From The WOW.Com Content Network
  2. Origin (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Origin_(mathematics)

    The origin of a Cartesian coordinate system. In mathematics, the origin of a Euclidean space is a special point, usually denoted by the letter O, used as a fixed point of reference for the geometry of the surrounding space. In physical problems, the choice of origin is often arbitrary, meaning any choice of origin will ultimately give the same ...

  3. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The origin is often labelled with the capital letter O. In analytic geometry, unknown or generic coordinates are often denoted by the letters (x, y) in the plane, and (x, y, z) in three-dimensional space. This custom comes from a convention of algebra, which uses letters near the end of the alphabet for unknown values (such as the coordinates ...

  4. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point . It can describe, for example, the motion of a rigid body around a fixed point.

  5. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and vice versa; this is the basis of analytic geometry. [3]

  6. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    Unlike in a geodesic metric space, the infimum does not have to be attained. An example of a length space which is not geodesic is the Euclidean plane minus the origin: the points (1, 0) and (-1, 0) can be joined by paths of length arbitrarily close to 2, but not by a path of length 2. An example of a metric space which is not a length space is ...

  7. History of geometry - Wikipedia

    en.wikipedia.org/wiki/History_of_geometry

    The Elements began with definitions of terms, fundamental geometric principles (called axioms or postulates), and general quantitative principles (called common notions) from which all the rest of geometry could be logically deduced. Following are his five axioms, somewhat paraphrased to make the English easier to read.

  8. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    In elliptic geometry we see a typical example of this. [1]: 108 In the spherical representation of elliptic geometry, lines are represented by great circles of a sphere with diametrically opposite points identified. In a different model of elliptic geometry, lines are represented by Euclidean planes passing through the origin. Even though these ...

  9. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point . It is an affine space , which includes in particular the concept of parallel lines .