Search results
Results From The WOW.Com Content Network
The logarithm keys (log for base-10 and ln for base-e) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation. The numerical value for logarithm to the base 10 can be calculated with the following identities: [5]
Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 = 9,808,357 + 0.09543. We can then get 10 9,808,357 × 10 0.09543 ≈ 1.25 × ...
Thus, log 10 (x) is related to the number of decimal digits of a positive integer x: The number of digits is the smallest integer strictly bigger than log 10 (x). [7] For example, log 10 (5986) is approximately 3.78 . The next integer above it is 4, which is the number of digits of 5986.
Equally spaced values on a logarithmic scale have exponents that increment uniformly. Examples of equally spaced values are 10, 100, 1000, 10000, and 100000 (i.e., 10 1, 10 2, 10 3, 10 4, 10 5) and 2, 4, 8, 16, and 32 (i.e., 2 1, 2 2, 2 3, 2 4, 2 5). Exponential growth curves are often depicted on a logarithmic scale graph.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x , log e x , or sometimes, if the base e is implicit, simply log x .
An easy way to calculate log 2 n on calculators that do not have a log 2 function is to use the natural logarithm (ln) or the common logarithm (log or log 10) functions, which are found on most scientific calculators. To change the logarithm base to 2 from e, 10, or any other base b, one can use the formulae: [50] [53]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, among the positive integers of at most 1000 digits, about one in 2300 is prime (log(10 1000) ≈ 2302.6), whereas among positive integers of at most 2000 digits, about one in 4600 is prime (log(10 2000) ≈ 4605.2). In other words, the average gap between consecutive prime numbers among the first N integers is roughly log(N). [3]