Search results
Results From The WOW.Com Content Network
When we allow the exponent n to be the reciprocal of an integer, i.e. n = 1/m for some integer m, we have the inverse Fermat equation a 1/m + b 1/m = c 1/m. All solutions of this equation were computed by Hendrik Lenstra in 1992. [169] In the case in which the mth roots are required to be real and positive, all solutions are given by [170]
Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b. For n equal to 2, the equation has infinitely many solutions, the Pythagorean triples.)
If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.
A rational quadratic form in five or more variables represents zero over the field ℚ p of p-adic numbers for all p. Meyer's theorem is the best possible with respect to the number of variables: there are indefinite rational quadratic forms Q in four variables which do not represent zero. One family of examples is given by Q(x 1,x 2,x 3,x 4 ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]
Domain colouring plot of in the complex plane. Black points represent the zeroes of the function. In mathematics, specifically in the fields of model theory and complex geometry, the Existential Closedness conjecture is a statement predicting when systems of equations involving addition, multiplication, and certain transcendental functions have solutions in the complex numbers.