Search results
Results From The WOW.Com Content Network
Conversely, a set which is not bounded is called unbounded. The word "bounded" makes no sense in a general topological space without a corresponding metric . Boundary is a distinct concept; for example, a circle (not to be confused with a disk ) in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary.
In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal that is closed under the order topology, and is unbounded (see below) relative to the limit ordinal. The name club is a contraction of "closed and unbounded".
The set of all bounded sequences forms the sequence space. [ citation needed ] The definition of boundedness can be generalized to functions f : X → Y {\displaystyle f:X\rightarrow Y} taking values in a more general space Y {\displaystyle Y} by requiring that the image f ( X ) {\displaystyle f(X)} is a bounded set in Y {\displaystyle Y} .
The collection of all bounded sets on a topological vector space is called the von Neumann bornology or the (canonical) bornology of .. A base or fundamental system of bounded sets of is a set of bounded subsets of such that every bounded subset of is a subset of some . [1] The set of all bounded subsets of trivially forms a fundamental system of bounded sets of .
In mathematics, specifically set theory and model theory, a stationary set is a set that is not too small in the sense that it intersects ... is a set unbounded ...
For example, the feasible set defined by the constraint set {x ≥ 0, y ≥ 0} is unbounded because in some directions there is no limit on how far one can go and still be in the feasible region. In contrast, the feasible set formed by the constraint set { x ≥ 0, y ≥ 0, x + 2 y ≤ 4} is bounded because the extent of movement in any ...
An interval is said to be bounded, if it is both left- and right-bounded; and is said to be unbounded otherwise. Intervals that are bounded at only one end are said to be half-bounded. The empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. Bounded intervals are also commonly known as finite ...
A well-ordered set also has the least-upper-bound property, and the empty subset has also a least upper bound: the minimum of the whole set. An example of a set that lacks the least-upper-bound property is , the set of rational numbers.