Search results
Results From The WOW.Com Content Network
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
Tensile strength or ultimate tensile strength is a limit state of tensile stress that leads to tensile failure in the manner of ductile failure (yield as the first stage of that failure, some hardening in the second stage and breakage after a possible "neck" formation) or brittle failure (sudden breaking in two or more pieces at a low-stress ...
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force. When a paper is cut with scissors ...
Plates thicker than 8 inches have a 32 ksi (220 MPa) yield strength and the same ultimate tensile strength of 58–80 ksi (400–550 MPa). [1] The electrical resistance of A36 is 0.142 μΩm at 68 °F (20 °C). A36 bars and shapes maintain their ultimate strength up to 650 °F (343 °C).
The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed.All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]
Representative curves of applied stress vs number of cycles for steel (showing an endurance limit) and aluminium (showing no such limit).. The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1]
Yield point for all ordinary-strength ABS steels is specified as 34,000 psi (235 MPa), except for ABS A in thicknesses of greater than 1 inch (25 mm) which has yield strength of 32,000 psi (225 MPa), and cold flange rolled sections, which have yield strength of 30,000 psi (205 MPa). Ultimate tensile strength of ordinary strength alloys is ...