Ads
related to: formula for subtracting fractions
Search results
Results From The WOW.Com Content Network
In mathematics, the lowest common denominator or least common denominator (abbreviated LCD) is the lowest common multiple of the denominators of a set of fractions. It simplifies adding, subtracting, and comparing fractions.
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5
While primarily associated with natural numbers in arithmetic, subtraction can also represent removing or decreasing physical and abstract quantities using different kinds of objects including negative numbers, fractions, irrational numbers, vectors, decimals, functions, and matrices. [2] In a sense, subtraction is the inverse of addition.
The least common multiple of the denominators of two fractions is the "lowest common denominator" (lcd), and can be used for adding, subtracting or comparing the fractions. The least common multiple of more than two integers a , b , c , . . . , usually denoted by lcm( a , b , c , . . .) , is defined as the smallest positive integer that is ...
Subtraction is the inverse of addition. In it, one number, known as the subtrahend, is taken away from another, known as the minuend. The result of this operation is called the difference. The symbol of subtraction is . [47] Examples are = and =. Subtraction is often treated as a special case of addition: instead of subtracting a positive ...
The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows:
The process of transforming an irrational fraction to a rational fraction is known as rationalization. Every irrational fraction in which the radicals are monomials may be rationalized by finding the least common multiple of the indices of the roots, and substituting the variable for another variable with the least common multiple as exponent.
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a × b = a × c , then the multiplicative term a can be canceled out if a ≠0, resulting in the equivalent expression b = c ; this is equivalent to dividing through by a .