Search results
Results From The WOW.Com Content Network
The definition of a cone may be extended to higher dimensions; see convex cone. In this case, one says that a convex set C in the real vector space R n {\displaystyle \mathbb {R} ^{n}} is a cone (with apex at the origin) if for every vector x in C and every nonnegative real number a , the vector ax is in C . [ 2 ]
In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section (ellipse, parabola, or hyperbola) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of ...
A spherical cone may mean: a hypercone in 4D; a spherical sector in 3D; See also. Spherical conic This page was last edited on 24 ...
A spherical sector (blue) A spherical sector. In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the
A solid angle in the form of a right circular cone can be projected onto a sphere, defining a spherical cap where the cone intersects the sphere. The magnitude of the solid angle expressed in steradians is defined as the quotient of the surface area of the spherical cap and the square of the sphere's radius.
The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1. The solid angle of a cone with its apex at the apex of the solid angle, and with apex angle 2 θ, is the area of a spherical cap on a unit sphere
In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.