Ad
related to: all formula of conic section of cylinder
Search results
Results From The WOW.Com Content Network
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
If a right section of a cylinder is a circle then the cylinder is a circular cylinder. In more generality, if a right section of a cylinder is a conic section (parabola, ellipse, hyperbola) then the solid cylinder is said to be parabolic, elliptic and hyperbolic, respectively. Cylindric sections of a right circular cylinder
In any case, the intersection curve of a plane and a quadric (sphere, cylinder, cone,...) is a conic section. For details, see. [2] An important application of plane sections of quadrics is contour lines of quadrics. In any case (parallel or central projection), the contour lines of quadrics are conic sections. See below and Umrisskonstruktion.
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.
More generally, when the directrix is an ellipse, or any conic section, and the apex is an arbitrary point not on the plane of , one obtains an elliptic cone [4] (also called a conical quadric or quadratic cone), [5] which is a special case of a quadric surface. [4] [5]
The center of a conic, if it exists, is a point that bisects all the chords of the conic that pass through it. This property can be used to calculate the coordinates of the center, which can be shown to be the point where the gradient of the quadratic function Q vanishes—that is, [8] = [,] = [,].
From the fact, that the affine image of a conic section is a conic section of the same type (ellipse, parabola,...), one gets: Any plane section of an elliptic cone is a conic section. Obviously, any right circular cone contains circles. This is also true, but less obvious, in the general case (see circular section).
In geometry, the conic constant (or Schwarzschild constant, [1] after Karl Schwarzschild) is a quantity describing conic sections, and is represented by the letter K. The constant is given by K = − e 2 , {\displaystyle K=-e^{2},} where e is the eccentricity of the conic section.